#2 Best Places to Live in Boston Area.. Brookline. Suburb of Boston, MA,. 142 Niche users give it an average review of 4.1 stars. Featured Review: Current Resident says Brookline's public transportation is excellent, and restaurants and businesses are everywhere in the historic districts, making shopping and dining an overall experience.
Make an art niche. A niche really sets off a single piece of artwork or even a gallery of prints. 4. Hang unique finds or sculptural pieces on the wall. 5. Tile on the back wall is an excellent way to add drama, texture, and impact! This tile is in our guest bath shower inset, but the same idea applies to any niche.
Even without a shower niche, this can easily occur within a 3 1/2″ stud wall in the colder months, especially if there’s no waterproofing membrane on the shower wall. With a shower niche taking up most of the space in a 3 1/2″ stud cavity, moisture condensation in the wall cavity is virtually guaranteed if the temperature drops a few
Niech A Oznacza Wyrażenie Algebraiczne 3X2-Xy. Web 🎓 a) (a⋅b)⋅c=((3×2−xy)⋅(−2y))⋅3x= =(−6x2y+2xy2)⋅3x= =−18x3y+6x2y2 odpowiedź na zadanie z matematyka z plusem 1 A) (a · b) · c b) a · (b…
Square has the small-business market (and their financial gripes) sorted. Niche marketing is an advertising strategy that targets a section or subset of an entire market. Rather than marketing to anyone and every one an offering might appeal to, it hones in on a particular group of potential customers who are most likely to benefit from it.
You can have a niche that is not an industry, but it’s much more complex to define. A niche is an area that is so focused that your buyer can instantly say, “That’s me.”. Not only does your buyer recognise themselves in your message and marketing, they also feel an instant connection. You want to stop this person in their tracks.
Boston College Rankings. Niche rankings are based on rigorous analysis of key statistics from the U.S. Department of Education and millions of reviews. Best Catholic Colleges in America. 3 of 160. Best Colleges for Accounting and Finance in America. 4 of 828. Best Colleges for Education in America. 15 of 972.
Niech . Wykaż, że . Wersja PDF. Przekształcamy teraz lewą stronę równości, którą mamy udowodnić - zamieniamy podstawę logarytmu na 2. Spos ób II.
Niche market. A niche market [note 1] is the subset of the market on which a specific product is focused. The market niche defines the product features aimed at satisfying specific market needs, as well as the price range, production quality and the demographics that it is intended to target. It is also a small market segment.
This item Neodrain 36X12Inch Shower Niche,Brushed 3-Tier Stainless Niche NO Tile Needed Recessed Niche Shower for Bathroom Storage Uni-Green Tile Ready Shower Niche-Yellow(Two Niches: One 16 inches Wide & The Other Niche 15.6 inches Wide)
nwIni. Opublikowano na ten temat Matematyka from Guest
Wskaż rysunek, na którym jest przedstawiony zbiór wszystkich liczb x spełniających warunek: 11 ≤ 2x − 7 ≤ 1 5 Wiem, że będzie to odp D, ale dlaczego nie B? Czy to dlatego, że 9 ≤ x ≤ 11, czyli x jest mniejsze lub równe 9 i większy lub równy 11? Ten znak jest tu wskazówką do rozwiązania? Answer
Z talii 52 kart losowo wybieramy 5. Oblicz prawdopodobieństwo, że wszystkie karty będą czarne. Zobacz rozwiązanie >> Jakie jest prawdopodobieństwo wylosowania liczby podzielnej przez 4 ze zbioru liczb \(\{1,2,3,4,5,6,7,8,9,10,11\}\). Zobacz rozwiązanie >> Obliczyć prawdopodobieństwo, że rzucając symetryczną kostką do gry otrzymamy parzystą liczbę oczek. Zobacz rozwiązanie >> Obliczyć prawdopodobieństwo, że rzucając dwukrotnie symetryczną kostką do gry otrzymamy dwa razy liczbę 6. Zobacz rozwiązanie >> W teleturnieju gracz ma wybór między 3 bramkami. W jednej z bramek jest samochód, w pozostałych dwóch są koty w worku. Prowadzący teleturniej wie, w której bramce jest samochód. Gracz wskazuje jedną z bramek, wtedy prowadzący otwiera jedną z pozostałych dwóch bramek, tą w której jest kot w worku. Prowadzący pyta gracza, czy chce zmienić bramkę. Gracz wygrywa, gdy wskaże bramkę, która kryje samochód. Załóżmy, że gracz na początku gry wybrał bramkę nr 1, a prowadzący otworzył bramkę nr 3 z kotem w worku. Czy graczowi opłaca się zmienić wybór i wskazać bramkę nr 2? Uzasadnij odpowiedź obliczając odpowiednie prawdopodobieństwa. Zobacz rozwiązanie >> Rzucamy sześcienną kostką do gry. Oblicz prawdopodobieństwo warunkowe otrzymania liczby oczek większej od 3 pod warunkiem, że liczba oczek jest parzysta. Zobacz rozwiązanie >> W urnie jest 11 kul białych, 10 kul czarnych i 9 kul niebieskich. Korzystając z klasycznej definicji prawdopodobieństwa oblicz:(a) prawdopodobieństwo wylosowania kuli białej(b) prawdopodobieństwo wylosowania kuli czarnej(c) prawdopodobieństwo wylosowania kuli niebieskiej lub czarnej Zobacz rozwiązanie >> Mamy dwie kostki go gry, z których jedna jest idealnie symetryczna i wyważona, tak, że wszystkie wyniki są jednakowo prawdopodobne. Druga kostka jest krzywa, tak, że prawdopodobieństwo wyrzucenia na niej 6 wynosi \(\frac{1}{5}\). Losowo wybrano jedną z dwóch kostek i wykonano nią dwa rzuty otrzymując dwie szóstki. Jakie jest prawdopodobieństwo, że rzucano krzywą kostką? Rozwiązanie widoczne po rejestracji Pewna rodzina ma dwójkę dzieci. Oblicz prawdopodobieństwo, że wszystkie dzieci są chłopcami pod warunkiem, że przynajmniej jedno dziecko jest chłopcem. Rozwiązanie widoczne po rejestracji W urnie jest 9 kul: 4 białe i 5 czarnych. Wybieramy losowo bez zwracania 2 kule. Wyznacz prawdopodobieństwo warunkowe tego, że druga wylosowana kula będzie czarna pod warunkiem, że pierwsza wylosowana kula była biała Rozwiązanie widoczne po rejestracji W urnie jest 9 kul: 4 białe i 5 czarnych. Wybieramy losowo 2 kule. Wyznacz prawdopodobieństwo, że obie kule będą białe, gdy:(a) losujemy kule bez zwracania(b) losujemy kule ze zwracaniem (losujemy pierwszą, zapisujemy jaki ma kolor i wrzucamy do urny) Rozwiązanie widoczne po rejestracji Mamy zbiór \(n\in\mathbb{N}\) elementów, wśród których \(m\leq n\) ma cechę C. Wybieramy losowo 2 elementy. Wyznacz prawdopodobieństwo, że oba wylosowane elementy będą miały cechę C, gdy:(a) losujemy elementy bez zwracania(b) losujemy elementy ze zwracaniem (losujemy pierwszy, zapisujemy czy ma cechę C i wrzucamy do urny) Rozwiązanie widoczne po rejestracji Przestrzeń \(\Omega\) zawiera 6 zdarzeń elementarnych \(\{\omega_1,\omega_2,\omega_3,\omega_4,\omega_5,\omega_6\}\). Niech \(A=\{\omega_1,\omega_3,\omega_5\}\) i \(B=\{\omega_2,\omega_3,\omega_6\}\). Wyznaczyć zdarzenia:(a) \(A\cup B\)(b) \(A\cap B\)(c) \(A\setminus B\)(d) \(B\setminus A\)(e) \(A^c\)oraz oblicz prawdopodobieństwa klasyczne wszystkich powyższych zdarzeń. Rozwiązanie widoczne po rejestracji Z talii 52 kart losowo wybieramy 5. Oblicz prawdopodobieństwo, że wśród kart będzie dokładnie jedna para. Rozwiązanie widoczne po rejestracji Umieszczamy 4 różne kule w 8 różnych urnach. Jakie jest prawdopodobieństwo, że:(a) każda kula będzie w innej urnie(b) dwie kule będą w tej samej urnie Rozwiązanie widoczne po rejestracji Umieszczamy losowo 4 nierozróżnialne kule w 8 różnych urnach. Jakie jest prawdopodobieństwo, że:(a) każda kula będzie w innej urnie(b) dwie kule będą w tej samej urnie Rozwiązanie widoczne po rejestracji Umieszczamy n ponumerowanych kul w n ponumerowanych urnach. Jakie jest prawdopodobieństwo, że dokładnie jedna urna jest pusta. Rozwiązanie widoczne po rejestracji Pewien student zdaje egzaminy z fizyki i matematyki. Prawdopodobieństwo, że zda fizykę wynosi 0,4, że zda oba egzaminy 0,2, a że zda co najmniej jeden egzamin wynosi 0,7. Oblicz prawdopodobieństwo, że student zda egzamin z matematyki. Rozwiązanie widoczne po rejestracji Statek (Titanic) posiada 2 przedziały wypornościowe duże i 3 mniejsze. Statek nie utonie (utrzyma się na wodzie) jeśli szczelny będzie co najmniej jeden duży i co najmniej 2 małe przedziały wypornościowe. Niech \(D_1,D_2\) oznaczają, że duże przedziały wypornościowe są szczelne, a \(M_1,M_2,M_3\), że szczelne są małe przedziały wypornościowe. Za pomocą zdarzeń \(D_i,\,\,(i=1,2)\) i \(M_j,\,\,(j=1,2,3)\) zapisz zdarzenie, że statek nie utonie (utrzymuje się na wodzie). Rozwiązanie widoczne po rejestracji Fabryka produkuje 100 samochodów miesięcznie. Niech \(W_i,\,\,i=1,2,...,100\) oznacza zdarzenie polegające na tym, że i-ty wyprodukowany w miesiącu samochód jest wadliwy. Za pomocą zdarzeń \(A_i\) zapisz następujące zdarzenia:(a) żadne auto nie jest wadliwe (wszystkie są sprawne)(b) co najmniej jeden samochód jest wadliwy(c) wszystkie samochody są wadliwe Rozwiązanie widoczne po rejestracji Wykazać, że:(a) \(P(A\setminus B)=P(A)-P(A\cap B)\)(b) \(P(A\cup B)=P(A)+P(B)-P(A\cap B)\)(c) \(P(\emptyset)=0\)(d) \(P(A^c)=1-P(A)\)(e) Jeżeli \(A\subset B\), to \(P(A)\leq P(B)\)(f) \(P(A)\leq 1\) Rozwiązanie widoczne po rejestracji Wiedząc, że \(P(A\setminus B)=\frac{1}{4}\) oraz \(P(A)=\frac{1}{2}\) i \(P(B)=\frac{1}{2}\) oblicz prawdopodobieństwa:(a) \(P(A\cap B)\)(b) \(P(A\cup B)\)(c) \(P(A^c)\) i \(P(B^c)\) Rozwiązanie widoczne po rejestracji Wiedząc, że \(P(A\setminus B)=\frac{1}{4}\) oraz \(P(A)=\frac{1}{2}\) i \(A\cup B\) jest zdarzeniem pewnym oblicz prawdopodobieństwa:(a) \(P(A\cap B)\)(b) \(P(B)\) Rozwiązanie widoczne po rejestracji Wiedząc, że \(P(A\setminus B)=\frac{1}{4}\) i \(P(A\cup B)=\frac{1}{4}\) oraz że zdarzenia A i B są niezależne, oblicz prawdopodobieństwa:(b) \(P(B)\)(a) \(P(A\cap B)\)(c) \(P(A)\) Rozwiązanie widoczne po rejestracji Wiedząc, że \(P(A)=\frac{1}{4}\) i \(P(A\cup B)=\frac{3}{4}\) oraz że zdarzenia A i B są niezależne, oblicz prawdopodobieństwa:(b) \(P(B)\)(a) \(P(A\cap B)\)(c) \(P(A\setminus B)\) Rozwiązanie widoczne po rejestracji Wiedząc, że \(P(A)=3P(A^c)\) i \(P(A\cup B)=\frac{3}{4}\) oraz że zdarzenia A i B są niezależne, oblicz prawdopodobieństwa:(a) \(P(A)\)(b) \(P(B)\)(c) \(P(A\cap B)\) Rozwiązanie widoczne po rejestracji Wiedząc, że \(P(A)=5P(A^c)\), \(P(B^c)=\frac{1}{2}\) i \(P(A\cup B)=\frac{3}{4}\) oraz że zdarzenia A i B są niezależne, oblicz prawdopodobieństwo:\(P(A\cap B)\) Rozwiązanie widoczne po rejestracji Rozpatrzmy rzut symetryczną, sześcienną kostką. Sprawdź, czy zdarzenia A i B są niezależne:(a) A - wyrzucenie parzystej liczby oczek, B - wyrzucenie liczby oczek większej od 2(b) A - wyrzucenie nieparzystej liczby oczek, B - wyrzucenie liczby oczek nie większej niż 2(c) A - wyrzucenie parzystej liczby oczek, B - wyrzucenie nieparzystej liczby oczek Rozwiązanie widoczne po rejestracji Rozpatrzmy rzut 2 symetrycznymi, sześciennymi kostkami. Sprawdź, czy zdarzenia A i B są niezależne:(a) A - suma oczek wynosi 4, B - różnica oczek wynosi 2(b) A - iloczyn oczek wynosi 2, B - iloraz oczek wynosi 2 Rozwiązanie widoczne po rejestracji Wśród wszystkich rodzin, które mają n dzieci wybieramy losowo jedną rodzinę. Niech A oznacza zdarzenie, że w losowo wybranej rodzinie jest co najwyżej jedna dziewczynka, a B to zdarzenie polegające na tym, że w rodzinie są chłopcy i dziewczynki. Sprawdź dla jakich wartości n, zdarzenia A i B są niezależne. Rozwiązanie widoczne po rejestracji Wykaż, że jeżeli zdarzenia A i B są niezależne to zdarzenia:(a) \(A^c\) i \(B\)(b) \(A^c\) i \(B^c\)również są niezależne. Rozwiązanie widoczne po rejestracji Niech \((A_k)_{k=1}^\infty\) będzie ciągiem parami rozłącznych zdarzeń losowych takich, że \(P(A_{k+1})=\frac{2}{3}P(A_k)\) dla \(k=1,2,3,...\) oraz \(\Omega=\bigcup\limits_{k=1}^{\infty}A_k\). Oblicz \(P(A_1)\). Rozwiązanie widoczne po rejestracji
Odpowiedzi EKSPERTHerhor odpowiedział(a) o 20:30 a+b = 3x-y +x-1=4x-y-1a+b-c=(a+b)-c= (4x-y-1)+3x= x-2y-1a-b-c= 3x-y-x+1+3x= 5x +1a-(b-c)= 3x-y -x+1-3x= -x-y+1 0 0 Aniooo xd odpowiedział(a) o 20:39: dziękuje Uważasz, że znasz lepszą odpowiedź? lub